Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Clone history shapes Populus drought responses.

Identifieur interne : 002F55 ( Main/Exploration ); précédent : 002F54; suivant : 002F56

Clone history shapes Populus drought responses.

Auteurs : Sherosha Raj [Canada] ; Katharina Br Utigam ; Erin T. Hamanishi ; Olivia Wilkins ; Barb R. Thomas ; William Schroeder ; Shawn D. Mansfield ; Aine L. Plant ; Malcolm M. Campbell

Source :

RBID : pubmed:21746919

Descripteurs français

English descriptors

Abstract

Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids.

DOI: 10.1073/pnas.1103341108
PubMed: 21746919
PubMed Central: PMC3145742


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Clone history shapes Populus drought responses.</title>
<author>
<name sortKey="Raj, Sherosha" sort="Raj, Sherosha" uniqKey="Raj S" first="Sherosha" last="Raj">Sherosha Raj</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Cell & Systems Biology, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Br Utigam, Katharina" sort="Br Utigam, Katharina" uniqKey="Br Utigam K" first="Katharina" last="Br Utigam">Katharina Br Utigam</name>
</author>
<author>
<name sortKey="Hamanishi, Erin T" sort="Hamanishi, Erin T" uniqKey="Hamanishi E" first="Erin T" last="Hamanishi">Erin T. Hamanishi</name>
</author>
<author>
<name sortKey="Wilkins, Olivia" sort="Wilkins, Olivia" uniqKey="Wilkins O" first="Olivia" last="Wilkins">Olivia Wilkins</name>
</author>
<author>
<name sortKey="Thomas, Barb R" sort="Thomas, Barb R" uniqKey="Thomas B" first="Barb R" last="Thomas">Barb R. Thomas</name>
</author>
<author>
<name sortKey="Schroeder, William" sort="Schroeder, William" uniqKey="Schroeder W" first="William" last="Schroeder">William Schroeder</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
<author>
<name sortKey="Plant, Aine L" sort="Plant, Aine L" uniqKey="Plant A" first="Aine L" last="Plant">Aine L. Plant</name>
</author>
<author>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21746919</idno>
<idno type="pmid">21746919</idno>
<idno type="doi">10.1073/pnas.1103341108</idno>
<idno type="pmc">PMC3145742</idno>
<idno type="wicri:Area/Main/Corpus">002D49</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D49</idno>
<idno type="wicri:Area/Main/Curation">002D49</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002D49</idno>
<idno type="wicri:Area/Main/Exploration">002D49</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Clone history shapes Populus drought responses.</title>
<author>
<name sortKey="Raj, Sherosha" sort="Raj, Sherosha" uniqKey="Raj S" first="Sherosha" last="Raj">Sherosha Raj</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Cell & Systems Biology, University of Toronto, Toronto, ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Br Utigam, Katharina" sort="Br Utigam, Katharina" uniqKey="Br Utigam K" first="Katharina" last="Br Utigam">Katharina Br Utigam</name>
</author>
<author>
<name sortKey="Hamanishi, Erin T" sort="Hamanishi, Erin T" uniqKey="Hamanishi E" first="Erin T" last="Hamanishi">Erin T. Hamanishi</name>
</author>
<author>
<name sortKey="Wilkins, Olivia" sort="Wilkins, Olivia" uniqKey="Wilkins O" first="Olivia" last="Wilkins">Olivia Wilkins</name>
</author>
<author>
<name sortKey="Thomas, Barb R" sort="Thomas, Barb R" uniqKey="Thomas B" first="Barb R" last="Thomas">Barb R. Thomas</name>
</author>
<author>
<name sortKey="Schroeder, William" sort="Schroeder, William" uniqKey="Schroeder W" first="William" last="Schroeder">William Schroeder</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
<author>
<name sortKey="Plant, Aine L" sort="Plant, Aine L" uniqKey="Plant A" first="Aine L" last="Plant">Aine L. Plant</name>
</author>
<author>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acclimatization (genetics)</term>
<term>Acclimatization (physiology)</term>
<term>Base Sequence (MeSH)</term>
<term>Cloning, Organism (MeSH)</term>
<term>DNA Methylation (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>DNA, Plant (metabolism)</term>
<term>Droughts (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>RNA, Plant (genetics)</term>
<term>RNA, Untranslated (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>ADN des plantes (métabolisme)</term>
<term>ARN des plantes (génétique)</term>
<term>ARN non traduit (génétique)</term>
<term>Acclimatation (génétique)</term>
<term>Acclimatation (physiologie)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Clonage d'organisme (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Méthylation de l'ADN (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Sécheresses (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>RNA, Plant</term>
<term>RNA, Untranslated</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Acclimatization</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>ARN des plantes</term>
<term>ARN non traduit</term>
<term>Acclimatation</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Acclimatation</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Acclimatization</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Cloning, Organism</term>
<term>DNA Methylation</term>
<term>Droughts</term>
<term>Ecosystem</term>
<term>Gene Expression Profiling</term>
<term>Genotype</term>
<term>Hybridization, Genetic</term>
<term>Models, Biological</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Clonage d'organisme</term>
<term>Génotype</term>
<term>Hybridation génétique</term>
<term>Modèles biologiques</term>
<term>Méthylation de l'ADN</term>
<term>Régions promotrices (génétique)</term>
<term>Sécheresses</term>
<term>Séquence nucléotidique</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21746919</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>30</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Clone history shapes Populus drought responses.</ArticleTitle>
<Pagination>
<MedlinePgn>12521-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1103341108</ELocationID>
<Abstract>
<AbstractText>Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Raj</LastName>
<ForeName>Sherosha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bräutigam</LastName>
<ForeName>Katharina</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hamanishi</LastName>
<ForeName>Erin T</ForeName>
<Initials>ET</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wilkins</LastName>
<ForeName>Olivia</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thomas</LastName>
<ForeName>Barb R</ForeName>
<Initials>BR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schroeder</LastName>
<ForeName>William</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>Shawn D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Plant</LastName>
<ForeName>Aine L</ForeName>
<Initials>AL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Campbell</LastName>
<ForeName>Malcolm M</ForeName>
<Initials>MM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D022661">RNA, Untranslated</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000064" MajorTopicYN="N">Acclimatization</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019976" MajorTopicYN="N">Cloning, Organism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019175" MajorTopicYN="N">DNA Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="N">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022661" MajorTopicYN="N">RNA, Untranslated</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21746919</ArticleId>
<ArticleId IdType="pii">1103341108</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1103341108</ArticleId>
<ArticleId IdType="pmc">PMC3145742</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome. 2006 Nov;49(11):1459-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17426761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2002 Dec;45(6):1083-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Mol Mutagen. 2008 Jan;49(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17948278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Aug;187(3):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20497347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1991 Mar;8(2):145-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Apr;5(2):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11856603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Nov;27(11):2465-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20551043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1254-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Oct;18(10):653-658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Nov;17(22):4827-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jun;186(4):856-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Jun;19(7):453-459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Mar;11(3):204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20142834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2008 Apr 15;375(2):354-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18249178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Apr;14(2):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21159546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Jun;43(2-3):179-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10999403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(4):e10326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):49-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17924949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1991 Apr;8(3):297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10604-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16009939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Nov;3(11):872-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Oct 29;330(6004):622-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21030646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Aug;49(8):1135-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Sep;63(5):715-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20553421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Reprod Med. 1997 May;42(5):260-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9172114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1742-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Nov;17(22):4897-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Jan;39(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17128275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Apr;12(2):133-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19179104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Nov;17(22):4779-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140970</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Ontario</li>
</region>
<settlement>
<li>Toronto</li>
</settlement>
<orgName>
<li>Université de Toronto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Br Utigam, Katharina" sort="Br Utigam, Katharina" uniqKey="Br Utigam K" first="Katharina" last="Br Utigam">Katharina Br Utigam</name>
<name sortKey="Campbell, Malcolm M" sort="Campbell, Malcolm M" uniqKey="Campbell M" first="Malcolm M" last="Campbell">Malcolm M. Campbell</name>
<name sortKey="Hamanishi, Erin T" sort="Hamanishi, Erin T" uniqKey="Hamanishi E" first="Erin T" last="Hamanishi">Erin T. Hamanishi</name>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<name sortKey="Plant, Aine L" sort="Plant, Aine L" uniqKey="Plant A" first="Aine L" last="Plant">Aine L. Plant</name>
<name sortKey="Schroeder, William" sort="Schroeder, William" uniqKey="Schroeder W" first="William" last="Schroeder">William Schroeder</name>
<name sortKey="Thomas, Barb R" sort="Thomas, Barb R" uniqKey="Thomas B" first="Barb R" last="Thomas">Barb R. Thomas</name>
<name sortKey="Wilkins, Olivia" sort="Wilkins, Olivia" uniqKey="Wilkins O" first="Olivia" last="Wilkins">Olivia Wilkins</name>
</noCountry>
<country name="Canada">
<region name="Ontario">
<name sortKey="Raj, Sherosha" sort="Raj, Sherosha" uniqKey="Raj S" first="Sherosha" last="Raj">Sherosha Raj</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F55 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F55 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21746919
   |texte=   Clone history shapes Populus drought responses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21746919" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020